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Abstract

We perform an experimental comparison of four algorithms for converting a given triangulation T of an orientable, connected,

boundaryless, and compact surface S in E
d into a quadrangulation Q of S. All algorithms compute Q by first pairing edge-adjacent

triangles of T (of another triangulation of S with the same vertex set) so that every triangle belongs to exactly one pair. Such a

perfect pairing is guaranteed for triangulations of boundaryless and compact surfaces (also known as closed surfaces). The common

edge of each pair of matched triangles is then removed to give rise to a quadrilateral of Q. We implemented two greedy algorithms,

a graph matching algorithm, and a new algorithm presented in this paper, which uses edge contractions and vertex splittings to

compute a quadrangulation of the surface in two steps by combining pairings with edge flips. If T has positive genus g, the new

algorithm takes O(gn f + g2) amortized time to compute a quadrangulation with the same vertex set, where n f is the number of

triangles of the triangulation; otherwise (i.e., if the genus is zero), it takes O(n f ) amortized time. We verify that if n f is large and

g ≪ n f (which is typically the case in several applications), then our new algorithm performs better than the other three. However,

if n f is not large enough or g is large (relative to n f ), then a fast and simple greedy algorithm, when combined with an effective

heuristic to pair up edge-adjacent triangles, is the best option among the four algorithms.
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1. Introduction

Polygonal meshes have become the de facto standard for the representation of surfaces with highly complex ge-

ometry and arbitrary genus in computer graphics and geometry processing applications. A polygonal mesh made

entirely of triangles (resp. quadrilaterals) is called a triangle (resp. quad) mesh. On the one hand, a triangle mesh

is arguably the most popular type of mesh representation for surfaces. Furthermore, provably good algorithms for

generating triangle meshes from surfaces given by parametric or implicit functions and point clouds are available in

the literature, and have also been implemented in public and freely-distributed software libraries. On the other hand,

quad meshes are better suited than their triangle counterparts for character animation, spline-based surface modeling,

texture mapping, mesh compression, and some specific finite element analyses, to name a few applications. However,
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the problem of generating a quad mesh from a given surface, which meets the needs of these applications, seems to

be intrinsically harder than its triangle mesh counterpart. This difficulty has led several researchers to use an indirect

approach, which consists of generating a quad mesh from a given triangle mesh of the surface.

There are two broad classes of indirect algorithms [1]: conversion algorithms and remeshing algorithms. The

former class consists of algorithms that convert a triangle mesh into a quad mesh by pairing up adjacent triangles, and

possibly flipping edges and/or adding a few vertices to the resulting quad mesh. The latter class consists of algorithms

that re-sample the triangle mesh, and connect the new vertices to form a quad mesh. Here, we restrict our attention

to conversion algorithms and their application to triangle meshes of closed surfaces (that is, oriented, connected, and

compact surfaces with empty boundary).

Our Contributions. We present the results of an experimental comparison of four conversion algorithms: two greedy

algorithms [2,3], the graph matching algorithm in [4], and a new algorithm presented in this paper, which uses edge

contractions and vertex splittings to compute a quadrangulation of the surface in two stages by combining pairings

with edge flips. If the input triangle mesh has positive genus g, the new algorithm takes O(gn f + g2) amortized time

to compute a quadrilateral mesh with the same vertex set, where n f is the number of triangles of the mesh; otherwise

(i.e., if g = 0), it takesO(n f ) amortized time. All four algorithms have been implemented by the authors. We evaluated

their performance against triangle meshes typically found in graphics and geometry processing applications, as well

as triangle meshes designed by the authors, which allow us to quantify the influence of parameters n f and g.

The emphasis of this work is on the run-time efficiency of producing a quad mesh, rather than the evaluation of

the resulting quad mesh by specific quality criteria. Indeed, when it comes to pairing algorithms, quadrilateral shape

quality is highly dependent on the triangle mesh [1]. Moreover, a quad mesh suitable for applications depend on

several quality criteria. As a result, pairing algorithms are better off serving the purpose of rapidly producing a quad

mesh that can be used as input to a powerful optimization procedure that improves the mesh with respect to several

quality criteria at the same time [5,6], or by applications in which mesh quality is not a critical factor [7,2,8,9].

2. Algorithms

This section briefly describes four conversion algorithms whose performances we compare in Section 3. All four

algorithms take the graph G of a triangulation T of a surface S as input, and output the graph H of a quadrangulation

Q of S such that G and H share the same node set The existence of a perfect pairing of triangles in T is guaranteed

by the fact that the dual graph of T is bridgeless and 3-regular and by Petersen’s theorem, which states that every

bridgeless, 3-regular graph admits a perfect matching [10].

Greedy algorithms. Greedy algorithms iteratively select one edge at a time from the input triangulation T and pair

up the two triangles incident on it. To ensure that each triangle belongs to at most one pair, every edge of T is marked

as either free or locked. Initially, all edges are marked free. Whenever an edge is selected, the algorithm checks if it is

free. If so, its two incident triangles are paired up with each other, and their remaining edges are marked as locked. If

the selected edge is locked, it is discarded and a new edge is selected. This iterative process ends when all edges of

T have been selected and tested. The algorithm takes Θ(n f ) time, where n f is the number of triangles of T . Here, we

report the results of two greedy algorithms: (1) the greedy algorithm that uses no heuristic to select edges, and (2) the

greedy algorithm developed by Puli and Segal [2]. If the pairing produced by the greedy algorithm is not perfect, we

augment the implied matching (in the dual graph G⋆) to make it perfect. We implemented the procedure for finding

augmenting paths described by Tarjan in [11]. Using a special case of disjoint sets from [12], Tarjan’s procedure

can find one augmenting path in O(n f ) amortized time. Thus, the time complexity of the pairing stage of the greedy

algorithms is O(k n f ) amortized time, where k is the number of triangles left unpaired by the greedy approach.

Graph-based algorithm. Orrin Frink gave a constructive proof for Petersen’s Theorem in 1926 [13]. His proof has

some minor flaws, but a correct version of it can be found in the first book on graph theory [14]. Using the key idea

of “graph reduction” from Frink’s proof , Biedl, Bose, Demaine, and Lubiw proposed an algorithm for computing a

perfect matching on a given 3-regular and bridgeless graph in O(n lg4 n) [15], where n is the number of graph nodes.

More recently, Diks and Stanczyk modified the algorithm in [15], and lowered the upper bound to find a perfect

matching to O(n lg2 n) [4], which is, to the best of our knowledge, the best known upper bound for computing a

perfect matching on a 3-regular and bridgeless graph. We implemented Diks and Stanczyk’s algorithm and applied it

to the dual graph G⋆ of the graph G of the input triangulation T in order to obtain a perfect pairing of the triangles of

T , and since we have n f = n, we obtain a quadrangulation of S in O(n f lg2 n f ) amortized time.
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2.1. A new algorithm using irreducible triangulations and edge flips

We propose a new algorithm to compute a quadrangulation of surface S in O(g2 + g n) time, where g is the genus

of S. The quadrangulation is also computed in two stages, but the pairing stage consists of three steps. First, the

algorithm computes an irreducible triangulation T ′ from triangulation T of S by applying a sequence of topology-

preserving edge contractions to the graph G of T . Second, all edge contractions are expanded in reverse order and

some edge flips may take place in between two expansions. The result is another triangulation,K , of the same surface

S and with the same set of vertices as T . Due to the edge flips, the set of edges and the set of triangles of K are not

the same as the ones of T , but K has the same number of edges and triangles as T . The second step also builds a

matching on the dual graph J⋆ of the graph J of K at the same time K is built. This matching is not perfect. So, a

third step is necessary to augment the matching computed in the second in order to make it perfect. To that end, we

also rely on the procedure from [11].

Contracting an edge e of a triangulation consists of removing e and all edges meeting e from the triangulation, and

then replacing them by a vertex w which is connected to every remaining vertex that was connected to a vertex of e

(see Figure 1). The inverse of the edge contraction operation is called vertex splitting. If the result of contracting e is

a triangulation of the same surface, e is said to be contractible and the contraction is said to be topology-preserving;

otherwise, e is said to be non-contractible. A triangulation is said to be irreducible if and only if every edge is

non-contractible. There are only finitely many irreducible triangulations for every surface [16]. In general, if the

surface has positive genus g, the number n′v of vertices of any irreducible triangulation of the surface is such that

n′v ≤ 26 · g − 4 [17].
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Fig. 1. The edge contraction operation and its inverse.

Two of the authors of this paper proposed a fast algo-

rithm for computing an irreducible triangulation T ′ of a

surface S from any given triangulation T of the same sur-

face [18]. If the genus g of S is zero, then the algorithm

producesT ′ in time linear in n f . Otherwise, T ′ is obtained

in O(g n f + g2) time. Triangulation T ′ is obtained by a

sequence of topology-preserving edge contractions, which

guarantees that T ′ is a triangulation of S. The first step

of our proposed algorithm, which we call the contraction

step, is carried out by the algorithm described in [18]. The

second step, which we call the expansion step, reverses all

edge contractions applied by the first phase using the vertex splitting operation. In between two vertex splitting oper-

ations, one or two edges of the current triangulation may be flipped. While reversing the contractions, the expansion

step computes a matching on the dual graph of the current triangulation. The output is a triangulation K of S, with

n f triangles as well, and a matching M on the dual graph J⋆ of the graph of K . With respect to M, we have that J⋆

has at most 4 unmatched nodes if S is a genus-0 surface, and at most 56 · g − 12 unmatched nodes otherwise (which

follows from the bound n′v ≤ 26 · g − 4, and the relations 3n′
f
= 2n′e and n′v − n′e + n′

f
= 2(1 − g), where n′e and n′

f
are

the number of edges and triangles of T ′). Both K and M can be obtained in O(n f ) time. A detailed description of the

expansion phase is available at [19] and is omitted here due to space constraints.

Matching M is augmented to become a perfect matching on J⋆ in the third step. Since M has at most ℓ = max{4, 56·

g − 12} unmatched nodes, the augmenting path procedure in [11] is invoked at most ℓ/2 times. Thus, the third step

takes O(n f ) amortized time if g is zero, and O(g n f ) amortized time otherwise. As we see in Section 3, ℓ is less than

2% of the total number n f of nodes of J⋆ for all test cases in which n f is large and g ≪ n f (which is typically the case

for meshes used in graphics and engineering applications). Finally, a quadragulationQ of S is obtained by pairing up

the dual triangles corresponding to matched nodes in the perfect matching on J⋆. Observe that Q has the same vertex

set as T , but its set of edges is not necessarily a subset of the set of edges of T (due to the edge flips carried out in the

expansion step). We thus have the following theorem (proof omitted due to lack of space):

Theorem 1. Given a triangulation T of a surface S with genus g, the graph of a quadrangulation Q of S with the

same vertex set as T can be generated in O(gn f + g2)-time if g is positive, and in O(n f )-time otherwise, where n f is

the number of faces of T . In either case, linear space is required.
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3. Experimental results

We implemented the simple greedy algorithm, Puli and Segal’s algorithm, Diks and Stanczyk’s algorithm, our new

algorithm (Section 2.1), and the augmenting path procedure described by Tarjan in [11] in C++. All implementations

were compiled with the compiler clang 503.0.40 using the -O2 option. We ran the implementations and collected

data on a Macbook Pro running OS X 10.9.4 at 2.4 GHz (Intel Core 2 Duo), with 3MB of level-two data cache

and 4GB of RAM. The implementations of the greedy algorithms and our new algorithm are based on the same

data structure for surface triangulations (i.e., an augmented, doubly-connected edge list ), while the implementations

of the graph-based algorithm and augmenting path procedure are based on specific data structures for graphs and

trees [11,20], and for fully-dynamic algorithms for connectivity queries on graphs [21]. Our implementations do not

depend on any third-party libraries, and they were made publicly available on the internet1.

Triangulation # Vertices # Edges # Triangles # Genus

Botijo 20,000 60,024 40,016 5

Eros 197,230 591,684 394,456 0

Filigree 29,129 87,771 58,514 65

Gargoyle 97,130 291,384 194,256 0

Happy Buddha 543,652 1,631,574 1,087,716 104

Iphigenia 351,750 1,055,268 703,512 4

Time measurements refer to the time

to compute an initial triangle pairing and

the time to make the initial pairing per-

fect (i.e., the time spent by the augment-

ing path procedure). If the initial pair-

ing is already perfect, which is always

the case for Diks and Stanczyk’s algo-

rithm, the second step is ignored. To

compare the implementations, we con-

sider three groups of triangulations. The

first group consists of low genus triangu-

lations, which are typically found in graphics applications2 (see table). The second group consists of a hierarchy of

5 triangulations A1-A5 of the same genus-0, box-shaped surface with 3,844 cavities. The third group consists of a

hierarchy of 5 triangulations B1-B5 of the same box-shaped surface with 3,500 holes. The second and third groups

allow us to compare worst-case scenarios for Puli and Segal’s algorithm and for the new algorithm. We denote the

simple greedy algorithm, Puli and Segal’s algorithm, Diks and Stanczyk’s algorithm, and our new algorithm by SG,

PS, DS, and LRS, respectively. We executed DS and LRS exactly once on each triangulation of the first group, while

SG and PS were executed ten times on each triangulation. This is because we randomized the edges and the triangles

of the input triangulations of SG and PS, respectively, to avoid selecting edges (resp. triangles) in the fixed order they

show up in an input file. The results corresponding to the triangulations of the first group are shown in Table 1.

Discussion and final remarks. Our experimental results allow us to analyze the influence of the parameters n f ,

g, k and ℓ. More importantly, they allow us to characterize why and when one algorithm can perform better than

the others. In particular, we observed that k = α · n f , with α ∈ [0.12, 0.13] ⊂ R for the simple greedy algorithm,

and α ∈ [10−5, 0.0021] ⊂ R for the improved greedy algorithm. In turn, ℓ does not depend on n f , but on g, and

ℓ ≤ 56 · g − 12. We verified that if n f is sufficiently large and g ≪ n f , then the new algorithm performs better than

the other three, as |ℓ − k| is small relative to n f . However, if g is large (relative to n f ), then the improved greedy

algorithm is a far better option than the other three. In addition, in this particular scenario, the new algorithm can do

worse than the graph-based algorithm, but still better than the simple greedy algorithm (which performed extremely

poorly in all test cases). Despite the facts that (1) the improved greedy algorithm is a far better option than the simple

one, and (2) the effectiveness of some heuristics for computing partial matchings on general graphs had already been

mentioned in [8], the mesh processing community appears to be unaware of the improved greedy algorithm. In fact,

it is not even mentioned among the possible solutions for the tri-quad conversion problem in a recent survey [1],

while the simple greedy heuristic is cited and has been implemented in a popular, freely available meshing tool

(http://meshlab.sourceforge.net/).
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Triangulation Alg. Initial pairing % paired # unpaired Augmentation Total time

Botijo SG 0.00165190 87.4455% 5,023.8 4.98534900 4.98700090

Botijo PS 0.05538500 99.9735% 10.6 0.01776800 0.07315300

Botijo DS 1.93481000 100.0000% 0.0 0.00000000 1.93481000

Botijo LRS 0.70350300 99.8471% 62.0 0.01820400 0.72170700

Eros SG 0.01006460 87.6632% 48,663.4 813.20450000 813.21456460

Eros PS 0.61721410 99.9988% 4.8 0.06892860 0.68614270

Eros DS 80.59760000 100.0000% 0.0 0.00000000 80.59760000

Eros LRS 1.14758400 99.9990% 4.0 0.01634400 1.16392800

Filigree SG 0.00102340 87.8566% 7,105.6 11.16882000 11.16984340

Filigree PS 0.07795620 99.8756% 72.8 0.08469160 0.16264780

Filigree DS 3.72425000 100.0000% 0.0 0.00000000 3.72425000

Filigree LRS 0.14898500 98.7148% 752.0 0.27949900 0.42848400

Gargoyle SG 0.00395690 87.5094% 24,263.8 213.01330000 213.01725690

Gargoyle PS 0.29626481 99.9877% 23.8 0.20473760 0.50100241

Gargoyle DS 21.62160000 100.0000% 0.0 0.00000000 21.62160000

Gargoyle LRS 0.56195600 99.9979% 4.0 0.00883900 0.57079500

Happy Buddha SG 0.06403060 87.5097% 135,859.0 756.37240000 756.38179630

Happy Buddha PS 1.75697400 99.8856% 1,244.0 54.51173000 56.26870400

Happy Buddha DS 288.18500000 100.0000% 0.0 0.00000000 288.18500000

Happy Buddha LRS 3.76612000 99.8845% 1,474.0 13.88260000 17.64872000

Iphigenia SG 0.00848030 87.4546% 44,294.6 779.35900000 779.36748030

Iphigenia PS 0.52977010 99.9699% 106.4 1.52379900 2.05356910

Iphigenia DS 81.29790000 100.0000% 0.0 0.00000000 81.29790000

Iphigenia LRS 1.00929100 99.9819% 64.0 0.41545500 1.42474600

Table 1. Measurements obtained from executing the algorithms on each triangulation of the first group. All time measures are shown in seconds.

For SG and PS, the displayed values are average values over ten executions of each algorithm on each triangulation.
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